A new internet-enabled biological laboratory lets students interact with living cells in real-time, which could reshape how students learn about biology.

This interactive Biology Cloud Lab, as the researchers call their prototype, could lead students to learn in new and more imaginative ways.

“What has been missing from early biological lab experiences has been that last bit of basic science—the ability to truly interact and experiment with living cells so that students experience first-hand how cells behave in reaction to external stimuli,” says study co-leader Ingmar Riedel-Kruse, assistant professor of bioengineering at Stanford University.

“Labs in most schools are stuck in the 19th century, with cookbook-style experiments,” says study co-leader Paulo Blikstein, assistant professor of education. “Biology Cloud Labs could democratize real scientific investigation and change how kids learn science.”

How it works

The Biology Cloud Lab gives students and teachers remote control software to operate what the researchers call biotic processing units (BPUs). Each BPU includes a microfluidic chip containing communities of microorganisms. Around each chip, four user-controlled LEDs allow students to apply different types of light stimuli. A webcam microscope livestreams the chip’s content.

Kids are ‘natural scientists’ with live fish in class

The authors used a common single-celled organism called Euglena. Euglena seek out light to turn it into energy, but overly intense light also repels them. This behavioral contrast forces students to hypothesize why Euglena behave as they do, providing a deeper understanding of the scientific process at the heart of early lab work.

Students can control the lab from any internet-enabled computer, tablet, or smartphone. Today they can issue commands to shine the LEDS this way or that and observe how the Euglena behave. The researchers plan to add other microorganisms and stimuli; the concept of remotely controlled, interactive learning would also apply to physics, chemistry, and other fields.

Even with this prototype the researchers are thinking big. They believe that 250 of their biotic processing units, installed in a single 100-square-meter room and networked with a one-gigabit-per-second internet connection, could serve a million students each year. At that scale, each experiment would cost just one cent.

“We have optimized the technology to keep the cells stable and responsive over weeks. This makes the Biology Cloud Lab low-cost and scalable for basic education,” Riedel-Kruse says. “And we also implemented interfaces for experiment automation, data analysis, and modeling to enable deep inquiry.”

Scaling up for new standards

Several states are starting to follow the Next Generation Science Standards, the new guidelines for K-12 science education in the United States. Many other countries are reforming their science standards due to the increasing need for scientific literacy in the 21st century.

3D-print a microscope to play soccer with microbes

“Many of these international standards have proven hard to implement in real-world classrooms due to logistical and cost factors, especially for life sciences,” Blikstein says. “The Biology Cloud Lab will put many of the most sophisticated NGSS practices within reach of students for the first time.”

The researchers explain that the system includes software that makes it easy for students to analyze and visualize the data, test hypotheses, and program the system to run hundreds of experiments automatically.

Testing the prototype

The team tested its prototype, located on the Stanford campus, with a group of ten self-paced university students working from their homes in a college-level biophysics class. A second test with middle-school cohorts involved live, in-classroom experiments. These were projected on a wall where one student controlled the light stimuli through a joystick as the class discussed results and suggested various experimental variations.

“The technical challenges were considerable,” says Zahid Hossain, first author and doctoral candidate in computer science who designed the hardware and cloud architecture. “To make the biotic processing units work we had to develop new algorithms so that many, many users can run experiments over an extended time.”

Engin Bumbacher, a graduate student at the School of Education and a coauthor of the paper, remarked on the learning outcomes.

“The students visibly enjoyed the interactive experiments, noting behaviors and trying many light sequences,” Brumbacher says. “They engaged in rich discussions, analysis, and modeling, all in a single online lesson.”

In a third trial the researchers collaborated with Professor Kemi Jona at Northeastern University to integrate the Biology Cloud Lab into an educational content management system that allows teachers to personalize their lesson plans. Then students from a Chicago middle school successfully ran their experiments.

“We are doing to biology what Seymour Papert did to computer programming in the 1970s with the Logo language,” Blikstein says. “The Biology Cloud Lab makes previously impossible activities easy and accessible to kids—and maybe also to professional scientists in the future.”


This text is published here under a Creative Commons License.
Author: Andrew Myers-Stanford
Check here the article’s original source with the exact terms of the license to reproduce it in your own website